Family Letter

Content Overview

Dear Family,

In the first half of Unit 8, your child will be learning to recognize and describe geometric figures. One type of figure is an angle. Your child will use a protractor to find the measures of angles.

Other figures, such as triangles, may be named based on their angles and sides.

Right triangle

One right angle (90°)

Equilateral triangle
all three sides of equal length

Acute
triangle
All angles less than 90°

Isosceles triangle two sides of equal length

Obtuse triangle

One angle greater than 90°

Scalene triangle
three sides of different lengths

Be sure that your child continues to review and practice the basics of multiplication and division. A good understanding of the basics will be very important in later math courses when students learn more difficult concepts in multiplication and division.
If you have any questions or comments, please call or write to me. Thank you.

CACC

Sincerely, Your child's teacher

Un vistazo general al contenido

Estimada familia:

En la primera parte de la Unidad 8, su niño aprenderá a reconocer y a describir figuras geométricas. Un ángulo es un tipo de figura. Su niño usará un transportador para hallar las medidas de los ángulos.

Otras figuras, tales como los triángulos, se nombran según sus ángulos y lados.

Triángulo rectángulo

Tiene un ángulo recto $\left(90^{\circ}\right)$

Triángulo acutángulo

Todos los ángulos son menores que 90°

Triángulo isósceles dos lados tienen la misma longitud
䟚

Asegúrese de que su niño siga repasando y practicando las multiplicaciones y divisiones básicas. Es importante que domine las operaciones básicas para que, en los cursos de matemáticas de más adelante, pueda aprender conceptos de multiplicación y división más difíciles.

Si tiene alguna pregunta o algún comentario, por favor comuníquese conmigo.

Gracias.
Atentamente,
El maestro de su niño

Triángulo equilátero los tres lados tienen la misma longitud

Triángulo obtusángulo

Tiene un ángulo mayor que 90°

Triángulo escaleno los tres lados tienen diferente longitud

En la Unidad 8 se aplican los siguientes estándares auxiliares, contenidos en los Estándares estatales comunes de matemáticas con adiciones para California: 4.MD.5, 4.MD.5a, 4.MD.5b, 4.MD.6, 4.MD.7, 4.G.1, 4.G.2 y todos los de prácticas matemáticas.

Points, Lines, and Line Segments

VOCABULARY point
line
line segment endpoint

A point is shown by a dot. It is named by a capital letter

-X

A line is a straight path that goes on forever in both directions. When you draw a line, you put arrows on the ends to show that it goes on and on. Lines can be named by any two points on the line. Here are $\overleftrightarrow{A B}, \overleftrightarrow{G K}$, and $\overleftrightarrow{P N}$.

A line segment is part of a line. It has two ends, which are called endpoints. Segments are named by their endpoints. Here are $\overline{R S}, \overline{W T}$, and $\overline{D J}$.

1. You can measure to find the length of a line segment, but you cannot measure to find the length of a line.
Explain why.
\qquad
\qquad
\qquad
\qquad

VOCABULARY angle
ray vertex

An angle is formed by two rays with the same endpoint, called the vertex.

You can label figures with letters to name them. This is $\angle A B C$. Its rays are $\overrightarrow{B A}$ and $\overrightarrow{B C}$.

Draw and label each figure.

2. Draw and label a point. Write the name of your point. \qquad

3. Draw a ray. Label the endpoint. Write the name of your ray. \qquad
4. Draw an angle. Label the vertex and the two rays. Write the name of your angle.

Discuss Angles

Angles can be many different sizes.

Discuss the groups of angles.

5. How are all of these acute angles alike?
\qquad
\qquad
6. How is an acute angle different from a right angle?
\qquad
\qquad

7. How are all of these obtuse angles alike?
\qquad
\qquad
8. How is an obtuse angle different from a right angle?
\qquad
\qquad
9. How is an obtuse angle different from an acute angle?
\qquad
\qquad

Classify Angles

Use the letters to name each angle. Then write acute, right, or obtuse to describe each angle.
10.

11.

12.

13. Use the letters to name two acute and two obtuse angles in this figure. Write acute or obtuse to describe each angle.

\qquad
\qquad
\qquad
\qquad
14. Draw and label a right angle, an acute angle, and an obtuse angle.

											I				

Sort Angles

Cut along the dashed lines.

Introduce Degrees

VOCABULARY degree right angle straight angle

Angles are measured in units called degrees. One degree is the measure of one very small turn from one ray to the other.

This angle has a measure of 1 degree.

The measure of an angle is the total number of 1 -degree angles that fit inside it.

This angle measures 5 degrees.

The symbol for degrees is a small raised circle (${ }^{\circ}$. You can write the measure of the angle above as $5^{\circ} .5 \times 1^{\circ}=5^{\circ}$

A right angle has a measure of 90°. A 90° turn traces one quarter of a circle.

The angle below measures 360°. A 360° turn traces a complete circle.

VOCABULARY protractor

Use a Protractor

A protractor is a tool that is used to measure angles in degrees. This protractor shows that $\angle A B C$ measures 90°.

Measure each angle with your protractor. Write the measure.

$\angle K L M=$ \qquad
3.

4.

$\angle X Y Z=$ \qquad $\angle Q G V=$ \qquad

Sketch Angles

Sketch each angle, or draw it using a protractor.
5.
90°

7.
180°

6.
45°

8.
360°

Use Reasoning

Use the figures at the right to answer the following questions.
9. Name one right angle in each figure.
10. Name one straight angle in each figure.
\qquad
\qquad

11. How much greater is the measure of $\angle K R B$ than the measure of $\angle I A O$?
\qquad
12. Which angle appears to be a 45° angle?
\qquad
13. The measure of $\angle I A E$ is 135°.

What is the measure of $\angle O A E$? \qquad
What is the measure of $\angle U A E$? \qquad

Angles in the Real World

Here is a map of Jon's neighborhood. The east and west streets are named for presidents of the United States.
The north and south streets are numbered. The avenues have letters. Jon's house is on the corner of Lincoln and First.

14. What do the arrows to the left of the map tell you?
15. Jon leaves his house and rides his bike south on First. What kind of angle does he make for each turn in this route? What is the measure of each angle?

- Jon turns southeast onto Avenue A.
- When he reaches Washington, he turns west.
- When he gets back to First, he turns south.

16. Jon's cousin Cora leaves Jon's house and rides east on Lincoln to Avenue B. Draw the angle Cora makes if she turns southeast. What is the measure of the angle?

VOCABULARY circle reflex angle

Measure Angles in a Circle

You can show all the different types of angles in a circle.

Acute angle

greater than 0° and less than 90°

Obtuse angle

greater than 90° and less than 180°
© Houghton Mifflin Harcourt Publishing Company
Reflex angle

greater than 180° and less than 360°

Right angle

90°

Straight angle

180°

Circle

360°

Draw Angles in a Circle

Use a straightedge and a protractor to draw and shade an angle of each type. Measure and label each angle.

1. obtuse angle

2. acute angle

3. straight angle

4. three angles with a sum of 360°

5. Write out the sum of your angle measures in Exercise 4 to show that it equals 360°

VOCABULARY right triangle obtuse triangle acute triangle

The prefix tri- means "three," so it is easy to remember that a triangle has 3 angles. Triangles can take their names from the kind of angles they have.

- A right triangle has one right angle, which we show
 by drawing a small square at the right angle.
- An obtuse triangle has one obtuse angle.
- An acute triangle has three acute angles.

1. You can also use letters to write and talk about triangles. This triangle is $\triangle Q R S$. Name its three angles and their type.

\qquad
\qquad
\qquad
2. What kind of triangle is $\triangle Q R S$? How do you know?
3. Draw and label a right triangle, an acute triangle, and an obtuse triangle.

									-	-									[-		
												-		-	-	-						

Identify Angles of a Triangle

Name each triangle by its angles. Explain your thinking.
4.

5.

6.

9.

10.

11.

12.

13.

14.

15.

16. Describe how angles make triangles different from one another.
\qquad
\qquad

VOCABULARY equilateral isosceles scalene

Discuss Sides of a Triangle

- Triangles that have two equal sides are called isosceles. The word isosceles comes from very old
 words that mean "equal legs."
- Triangles with no equal sides are called scalene. All triangles that are not equilateral or isosceles are scalene.

Use these triangles to answer the questions.

17. Write the letter names of the scalene triangles.
\qquad
18. Write the letter names of the equilateral triangles.
\qquad
19. Write the letter names of the isosceles triangles.

Identify Sides of a Triangle

Name each triangle by its sides. Explain your thinking.

21.

22.

24.

25.

27.

28.

\qquad
\qquad
29.

31.

32. Explain how sides make triangles different from each other.
\qquad
\qquad

Sort Triangles in Different Ways

33. Write a capital letter and a lowercase letter inside each triangle below, using the keys at the right.

Cut out the triangles and use the diagram below to sort them in different ways.

$$
\begin{aligned}
\text { acute } & =\mathrm{a} \\
\text { obtuse } & =\mathrm{o} \\
\text { right } & =\mathrm{r}
\end{aligned}
$$

$$
\begin{aligned}
\text { Isosceles } & =\mathrm{I} \\
\text { Scalene } & =\mathrm{S} \\
\text { Equilateral } & =\mathrm{E}
\end{aligned}
$$

Triangles

Possible Ways to Name Triangles

Draw each triangle. If you can't, explain why.

34. Draw a right scalene triangle.	35. Draw an obtuse scalene triangle.
36. Draw a right equilateral triangle.	37. Draw an acute isosceles triangle.
38. Draw an obtuse equilateral triangle.	39. Draw a right isosceles triangle.

Fill in the missing words in the sentences about triangles.
40. If a triangle has an obtuse angle, then it cannot be an \qquad triangle.
41. If a triangle has a right angle, then it cannot have an \qquad angle.
42. Every triangle has at least \qquad acute angles.

Add Angle Measures

Two angles can be put together to form another angle. The measure of the whole angle is the sum of the measures of the smaller angles. The measure of the whole angle shown is 105°.

$$
75^{\circ}+30^{\circ}=105^{\circ}
$$

What kind of angle is formed when the two angles are put together? What is its measure?

5. An angle is made from two angles with measures 80° Show your work. and 70°. Write and solve an equation to find the measure of the whole angle.
\qquad
\qquad
\qquad

Put Angles Together

Use the angles shown to make other angles.

6. Which two angles would you put together to make a 75° angle?
7. Which two angles would you put together to make a 145° angle?
8. Which two angles would you put together to make a straight angle?
9. Which two angles would you put together to make a right angle?
10. If you put all five angles together, what would be the measure of the whole angle? What kind of figure would you form?
11. Use a protractor and straightedge to draw the angle formed by putting $\angle A B C$ and $\angle K L M$ together. Show its measure.

Subtract Angle Measures

Write an equation to find the unknown angle measure.
12.

The measure of $\angle R S T$ is 120°. What is the measure of $\angle V S T$?
\qquad
14.

The measure of $\angle A B C$ is 180°. What is the measure of $\angle D B C$?
\qquad
\qquad
16. Draw your own angle problem and share it with a partner.
\qquad
17. When a right angle is made from two smaller angles, what must be true about the smaller angles?
\qquad
18. When a straight angle is made from two smaller angles, what must be true about the smaller angles?
\qquad
\qquad

What's the Error?

Dear Math Students,
I want to find the measure of $\angle D B E$ in the following diagram.

I wrote and solved this equation.

$$
\begin{aligned}
180^{\circ}-\left(60^{\circ}+60^{\circ}\right) & =x \\
180^{\circ}-60^{\circ}+60^{\circ} & =x \\
120^{\circ}+60^{\circ} & =x \\
180^{\circ} & =x
\end{aligned}
$$

This answer doesn't make sense. Did I do something wrong?

Your friend, Puzzled Penguin
19. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Add Angle Measures

Use an equation to solve.

1. The ski jumper shown makes angles with her skis as shown. What is the sum of the angles?
\qquad
2. In the roof framework shown, $\angle A B D$ and $\angle D B C$ have the same measure. What is the measure of $\angle D B A$? What is the measure of $\angle A B C$?

3. In the simple bridge structure shown, the measure of $\angle R S V$ is 30° and $\angle V S T$ is a right angle. What is the measure of $\angle R S T$?

The circle at the right represents all of the students in a class. Each section represents the students in the class who chose a certain type of animal as their favorite type of pet. The angle measures for some sections are given.
4. What is the sum of the angle measures for Cat, Dog, and Horse?
5. What is the total angle measure for the
 circle? What is the angle measure for Fish?

Subtract Angle Measures

Use an equation to solve.

6. In the roof framework shown, the measure of one angle is 80°. What is the unknown angle measure?

7. When different items are poured, they form a pile in the shape of a cone. The diagram shows a pile of sand. What is the angle the sand makes with the ground?

8. In a miniature golf game, a player hits a ball against a wall at an angle with measure 35° and it bounces off at an angle of 20°. What is the unknown angle measure in the diagram?
\qquad
9. In a reclining chair, you can push back from an upright position to sit at an angle. In the chair shown, the whole angle between the back of the chair and the seat of the chair is 130°. Find the unknown angle measure to find by how much the chair is reclined from upright.

Content Overview

Dear Family,

Your child has been learning about geometry throughout this unit. In this second half of the unit, your child will be learning how to recognize and describe a group of geometric figures called quadrilaterals, which get their name because they have four (quad-) sides (-lateral). Five different kinds of quadrilaterals are shown here.

Square
4 equal sides opposite sides parallel 4 right angles

Rhombus
4 equal sides opposite sides parallel

Rectangle 2 pairs of parallel sides 4 right angles

Parallelogram
2 pairs of parallel sides

Trapezoid exactly 1 pair of opposite sides parallel

If you have any questions or comments, please call or write to me.

Sincerely,
 Your child's teacher

Unit 8 addresses the following standards from the Common Core State Standards for Mathematics with California Additions: 4.0A.5, 4.G.1, 4.G.2, 4.G.3, and all the Mathematical Practices.

Estimada familia:

Carta a la familia

Un vistazo general al contenido

Durante esta unidad, su niño ha estado aprendiendo acerca de geometría. En esta parte de la unidad, su niño aprenderá cómo reconocer y describir un grupo de figuras geométricas llamadas cuadriláteros, que reciben ese nombre porque tienen cuatro (quadri-) lados (-lateris). Aquí se muestran cinco tipos de cuadriláteros:

Cuadrado

4 lados iguales lados opuestos paralelos

4 ángulos rectos

Rombo
4 lados iguales lados opuestos paralelos

Rectángulo
2 pares de lados paralelos 4 ángulos rectos

Paralelogramo 2 pares de lados paralelos

Trapecio
exactamente 1 par de lados paralelos opuestos

Si tiene alguna pregunta o algún comentario, por favor comuníquese conmigo.

Atentamente, El maestro de su niño

VOCABULARY parallel

Define Parallel Lines

The lines or line segments in these pairs are parallel.

The lines or line segments in these pairs are not parallel.

1. What do you think it means for two lines to be parallel?

Draw Parallel Lines

2. Draw and label a pair of parallel lines.
© Houghton Mifflin Harcourt Publishing Company

3. Draw and label a figure with one pair of parallel line segments.

VOCABULARY perpendicular

Define Perpendicular Lines

The lines or line segments in these pairs are perpendicular.

The lines or line segments in these pairs are not perpendicular.

4. What do you think it means for two lines to be perpendicular?

Draw Perpendicular Lines

5. Draw and label a pair of perpendicular lines.

6. Draw and label a figure with one pair of perpendicular line segments.

Identify Types of Lines

Tell whether each pair of lines is parallel, perpendicular, or neither.
7.

8.

9.

10.

11. Draw a pair of parallel line segments.
12. First, draw a line segment 3 cm long. Then, draw a line segment 6 cm long that looks perpendicular to your first line segment.

Lines on a Map

Use the map.

13. On Wednesday, Del leaves his house and walks West along Lincoln Street. Gigi leaves her house and walks East along Jefferson Street. What kind of lines are Lincoln Street and Jefferson Street?
14. Will Del and Gigi ever meet? If so, where?
\qquad
\qquad
15. On Friday, Del leaves his house and walks South along Fifth Street. Gigi leaves her house and walks East along Jefferson Street. What kind of lines are Fifth Street and Jefferson Street?
\qquad
16. Will Del and Gigi ever meet? If so, where?
\qquad
\qquad

Identify Sides of Quadrilaterals

VOCABULARY quadrilateral adjacent opposite

Look at these quadrilaterals.

1. What do you think it means for two sides to be adjacent?
2. Which other sides are adjacent to each other?
\qquad
In all of the quadrilaterals, the sides labeled a and c are opposite each other.
3. What do you think it means for two sides to be opposite each other?
\qquad
\qquad
4. Which other sides are opposite each other?

VOCABULARY trapezoid parallelogram rhombus

Identify Types of Quadrilaterals

Some quadrilaterals are special because they have parallel sides or right angles. You already know about rectangles and squares. Other types of quadrilaterals are the trapezoid, parallelogram, and rhombus.

You can list each type and describe its sides and angles.

Draw Special Quadrilaterals

5. Draw a quadrilateral that has exactly one pair of opposite sides parallel. What type of quadrilateral is it?
\qquad
6. Draw a quadrilateral that has two pairs of opposite sides parallel. What type of quadrilateral is it? Is there more than one answer?
\qquad
7. Draw a quadrilateral that has two pairs of opposite sides parallel, 4 equal sides, and no right angles. What type of quadrilateral is it?
\qquad

Identify Relationships

Why is each statement below true?

8. A rhombus is always a parallelogram, but a parallelogram isn't always a rhombus.
9. A rectangle is a parallelogram, but a parallelogram is not necessarily a rectangle.
10. A square is a rectangle, but a rectangle does not have to be a square.
11. Complete the category diagram by placing each word in the best location.

Quadrilateral
Trapezoid
Parallelogram
Rectangle
Rhombus
Square

Sort and Classify Quadrilaterals

Cut along the dashed lines.

VOCABULARY diagonal

Use Diagonals to Make Triangles

A diagonal connects opposite angles of a quadrilateral.
You can make triangles by drawing a diagonal on a quadrilateral.

List all names for each quadrilateral in Exercises 1-3. Then use letters to name the triangles you can make with the diagonals and tell what kind of triangles they are.
1.

2.

© Houghton Mifflin Harcourt Publishing Company
3.

Use Diagonals to Make Triangles (continued)

List all names for each quadrilateral in Exercises 4-6.
Then use letters to name the triangles you can make with the diagonals and tell what kind of triangles they are.
4.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Build Quadrilaterals With Triangles

You can make a quadrilateral by joining the equal sides of two triangles that are the same size and shape.

Cut out the triangles below. For each exercise, glue two of the triangles on this paper so that the stated sides are joined. Then write the name of the quadrilateral.
7. $\overline{A B}$ is joined to $\overline{A B}$
8. $\overline{A C}$ is joined to $\overline{A C}$
9. $\overline{B C}$ is joined to $\overline{B C}$
© Houghton Mifflin Harcourt Publishing Company

Match Quadrilaterals with Triangles

Name the triangle that is used twice to form each of the following quadrilaterals. What kind of triangle is it?
Then list all names for the quadrilateral.
10.

11.

12.

\qquad
\qquad
\qquad
13.

14.

15.

\qquad
\qquad
\qquad
\qquad

Draw Perpendicular Lines in Triangles

A vertex is a point shared by two sides of a polygon.
Draw a scalene triangle $A B C$.
16. What is true about the sides of your triangle?
\qquad
17. Draw a segment from one vertex so that it is perpendicular to the opposite side. Label the segment and mark the right angles.
\qquad
18. Name the triangles formed. What kind of triangles are they?
\qquad
\qquad
19. Are the triangles you formed the same size and shape?
\qquad
Draw an isosceles triangle JKL for Exercises 20-23.
20. What is true about the sides of your triangle?
\qquad
21. Draw a segment from the vertex between the equal sides of the triangle so that it is perpendicular to the opposite side. Label the segment and mark the right angles.
\qquad

Draw Perpendicular Lines in Triangles (continued)
Use your isosceles triangle $J K L$ to answer the questions.
22. Name the segments formed by the perpendicular segment in $\triangle J K L$. What is true about the lengths of the segments?
\qquad
\qquad
23. Name the triangles formed. Are they the same size and shape?
\qquad
\qquad

What's the Error?

Dear Math Students,
I tried to do Exercises 20-23 again using an equilateral triangle $P Q R$. I found that $\overline{P S}$ and $\overline{R S}$ that I formed are not each half the length of side $\overline{P R}$ and the new triangles are not the same size and shape.

Did I do something wrong?
Your friend,

Puzzled Penguin
24. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad

VOCABULARY polygon

Sort Polygons by Angles

Triangles and quadrilaterals are examples of polygons.
Use these polygons for Exercises 1-5.

1. Which figures have one or more acute angles?
\qquad
2. Which figures have one or more right angles?
\qquad
3. Which figures have one or more obtuse angles?
\qquad
4. Which figures have both acute angles and right angles?
\qquad
5. Which figures have both acute angles and obtuse angles?

Sort Polygons by Sides

Use these polygons for Exercises 6-10.

6. Which figures have perpendicular sides?
7. Which figures have exactly one pair of opposite sides parallel?
\qquad
8. Which figures have two pairs of opposite sides parallel?
\qquad
9. Which figures have both parallel and perpendicular sides?
\qquad
10. Which figures have no parallel or perpendicular sides?

- Sort Polygons Cards

VOCABULARY line symmetry line of symmetry

Identify Line Symmetry in Figures

A plane figure has line symmetry if it can be folded along a line so the two halves match exactly. The fold is called a line of symmetry.

Does the figure have line symmetry? Write yes or no.

1.

2.

3.

© Houghton Mifflin Harcourt Publishing Company
5.

\qquad
4.

6.

Draw Lines of Symmetry

A line of symmetry divides a figure or design into two matching parts.

Draw the line of symmetry in the figure or design.

8.

9. Which figures in Exercises 1-6 have more than one line of symmetry? \qquad
10. Choose one of the figures from your answer to Exercise 9. Draw the figure and draw all of its lines of symmetry.

What's the Error?

Dear Math Students:
I drew the diagonal of this rectangle as a line of symmetry.

My friend told me I made a mistake. Can you help me figure out what my mistake was?

Your friend, Puzzled Penguin
11. Write a response to Puzzled Penguin.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Draw the Other Half

Draw the other half of each figure to make a whole figure or design with line symmetry.
12.

13.

14.

16. Check Your Work Copy one of your answers to Exercises 12-15 onto another piece of paper. Cut out the design and then fold it along the line of symmetry. Check that the two halves of the design match exactly.

Math and Flags of the World

Sudan

Bangladesh

Switzerland

Guyana

Jamaica

South Africa

Paraguay

Denmark

Japan

Kuwait

India
0
Laos

Flags are used in many different ways. Some sports teams use flags to generate team spirit, a flag might be used to start a race, or a homeowner might use a flag for decoration. States and countries also use flags as a representation of their communities. Each flag is different, both in color and design.

Use the designs on the flags to answer the questions.

1. What types of quadrilaterals are used in the Kuwait flag?
2. How many designs have no parallel lines? Name the flags.
3. How many designs have perpendicular lines? Name the flags.
4. Which designs have at least two lines of symmetry?

Designer Flags

Design your own flag in the space below. Your flag design should include each of the following: one triangle, one pair of parallel lines, and one 30° angle.

5. What type of triangle did you draw in your flag design?

Explain how the sides of the triangle helped you classify the triangle.
\qquad
6. Compare the flag design you made to the flag design that a classmate made. How are the two designs the same? How are they different? What shapes did you use that your classmate did not use?

Review/Test

1. Draw and label line segment $F G$.
\square
2. Use a protractor to measure the angle.

The angle measures
3. Choose the figure that has at least one pair of parallel lines. Mark all that apply.

(A)

(B)

(C)

(D)
4. Use the figures. For 4a-4d, select True or False for the statement.

4a. $\overleftrightarrow{Z X}$ and $\overleftrightarrow{W Y}$ are parallel.
4b. $\overleftrightarrow{S U}$ and $\overleftrightarrow{R T}$ are parallel.
4c. $\overleftrightarrow{Z X}$ and $\overleftrightarrow{W Y}$ are perpendicular.
4d. A line drawn through points R and U is perpendicular to $\overleftrightarrow{R T}$.

- True

True

- True
- True
- False

5. The map below shows a section of Fatima's town.

Part A

Fatima is walking on Oak Drive and Gabe is walking on Miller Ave. Could Fatima and Gabe ever meet? If so, where?
\square

Part B

Which street is perpendicular to Broad St.? Explain how you know.
\square
6. Choose the word that makes a true statement.

7. Draw all the lines of symmetry for the figure.

8. A gear in a watch turns clockwise, in one-degree sections, a total of 300 times.

The gear has turned a total of \square degrees.
9. Lucy is designing a block for a quilt. She measured one of the angles. Use the numbers and symbols on the tiles to write and solve an equation to find the unknown angle measure.

Solution: ? $=\square$
10. Luke is drawing a figure that has exactly 2 acute angles.

For 10a-10d, choose Yes or No to tell if the figure could be the figure Luke is drawing.

○ Yes ○ No

- Yes
- No
© Houghton Mifflin Harcourt Publishing Company
10c.

10d.
○ No
- Yes
- No

11. Triangle QRS can be classified

12. Choose the two angles that could be put together to make a 130° angle.

(A)

(B)
(C)
(D)
13. A sign has two pairs of parallel sides and two pairs of equal sides. What shape is the sign?

14. The circle represents all of the students in a class. Each section represents the students in the class who chose a certain color as their favorite. The angle measures for some sections are given.

Part A

What is the sum of the angle measures
 for Blue, Red, and Green?

Part B

Explain how to find the angle measure for Pink. Then find the measure.
\square
15. Draw one diagonal in the figure to form two obtuse triangles.

16. Does the figure have a line of symmetry? Explain.

\square
17. A Ferris wheel turns 35° before it pauses. It turns another 85° before stopping again.

Part A

What is the total measure of the angle that the Ferris wheel turned?
\square

Part B

How many more times will it need to repeat the pattern to turn 360° ?
Explain your thinking.

\square
18. Cross Street, West Street, and Carmichael Street form a triangle.

How can the triangle be classified? Mark all that apply.
O scalene
O isosceles

- equilateral
O acute
\bigcirc right
- obtuse

19. A stage has four sides with exactly one pair of parallel sides.

Marjorie says the shape of the stage is a quadrilateral and a rectangle. Do you agree? Explain.
\square
20. What is the unknown angle measure in this pattern?

